Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Nucleic Acids Res ; 49(22): 13019-13030, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-2285864

ABSTRACT

SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5' capping of viral RNAs. The formation of the 5' 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5' triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5' end of viral RNA via a 5' to 5' triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Nucleotidyltransferases/antagonists & inhibitors , RNA, Viral/biosynthesis , SARS-CoV-2/enzymology , Adenosine Triphosphate/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Genome, Viral/genetics , Guanosine/analogs & derivatives , Guanosine/metabolism , Humans , Nucleotidyltransferases/metabolism , RNA Caps/genetics , SARS-CoV-2/genetics , Vaccinia virus/enzymology , Vaccinia virus/metabolism , COVID-19 Drug Treatment
2.
J Biol Chem ; 299(3): 102980, 2023 03.
Article in English | MEDLINE | ID: covidwho-2220926

ABSTRACT

Replication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication. We determined that Nsp13 preferentially interacts with single-stranded DNA compared with single-stranded RNA to unwind a partial duplex helicase substrate. We present evidence for functional cooperativity as a function of Nsp13 concentration, which suggests that oligomerization is important for optimal activity. In addition, under single-turnover conditions, Nsp13 unwound partial duplex RNA substrates of increasing double-stranded regions (16-30 base pairs) with similar efficiency, suggesting the enzyme unwinds processively in this range. We also show Nsp13-catalyzed RNA unwinding is abolished by a site-specific neutralizing linkage in the sugar-phosphate backbone, demonstrating continuity in the helicase-translocating strand is essential for unwinding the partial duplex substrate. Taken together, we demonstrate for the first time that coronavirus helicase Nsp13 disrupts a high-affinity RNA-protein interaction in a unidirectional and ATP-dependent manner. Furthermore, sensitivity of Nsp13 catalytic functions to Mg2+ concentration suggests a regulatory mechanism for ATP hydrolysis, duplex unwinding, and RNA protein remodeling, processes implicated in SARS-CoV-2 replication and proofreading.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Viral Nonstructural Proteins , Humans , Adenosine Triphosphate/metabolism , COVID-19/virology , RNA , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism
3.
Emerg Microbes Infect ; 12(1): e2176008, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2222492

ABSTRACT

Disruption of the cell cycle is a common strategy shared by many viruses to create a conducible cellular microenvironment for their efficient replication. We have previously shown that infection of cells with gammacoronavirus infectious bronchitis virus (IBV) activated the theataxia-telangiectasia mutated (ATM) Rad3-related (ATR)/checkpoint kinase 1 (Chk1) pathway and induced cell cycle arrest in S and G2/M phases, partially through the interaction of nonstructural protein 13 (nsp13) with the p125 catalytic subunit of DNA polymerase delta (pol δ). In this study, we show, by GST pulldown, co-immunoprecipitation and immunofluorescent staining, that IBV nsp12 directly interacts with the p50 regulatory subunit of pol δ in vitro and in cells overexpressing the two proteins as well as in cells infected with a recombinant IBV harbouring an HA-tagged nsp12. Furthermore, nsp12 from severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 was also able to interact with p50. These interactions play a synergistic role with nsp13 in the induction of S phase arrest. The fact that subunits of an essential cellular DNA replication machinery physically associate with two core replication enzymes from three different coronaviruses highlights the importance of these associations in coronavirus replication and virus-host interaction, and reveals the potential of targeting these subunits for antiviral intervention.


Subject(s)
COVID-19 , Infectious bronchitis virus , Humans , DNA Polymerase III/chemistry , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , S Phase , Coronavirus RNA-Dependent RNA Polymerase , RNA Helicases/genetics , RNA Helicases/metabolism , SARS-CoV-2/metabolism , Cell Cycle Checkpoints , Infectious bronchitis virus/genetics , Infectious bronchitis virus/metabolism , DNA Damage
4.
Nature ; 614(7949): 781-787, 2023 02.
Article in English | MEDLINE | ID: covidwho-2221840

ABSTRACT

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Coronavirus RNA-Dependent RNA Polymerase/ultrastructure , COVID-19/virology , Nucleosides/metabolism , Nucleosides/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Substrate Specificity , Guanosine Triphosphate/metabolism , RNA Caps
5.
Front Immunol ; 13: 1015355, 2022.
Article in English | MEDLINE | ID: covidwho-2198871

ABSTRACT

GS-441524, an RNA-dependent RNA polymerase (RdRp) inhibitor, is a 1'-CN-substituted adenine C-nucleoside analog with broad-spectrum antiviral activity. However, the low oral bioavailability of GS-441524 poses a challenge to its anti-SARS-CoV-2 efficacy. Remdesivir, the intravenously administered version (version 1.0) of GS-441524, is the first FDA-approved agent for SARS-CoV-2 treatment. However, clinical trials have presented conflicting evidence on the value of remdesivir in COVID-19. Therefore, oral GS-441524 derivatives (VV116, ATV006, and GS-621763; version 2.0, targeting highly conserved viral RdRp) could be considered as game-changers in treating COVID-19 because oral administration has the potential to maximize clinical benefits, including decreased duration of COVID-19 and reduced post-acute sequelae of SARS-CoV-2 infection, as well as limited side effects such as hepatic accumulation. This review summarizes the current research related to the oral derivatives of GS-441524, and provides important insights into the potential factors underlying the controversial observations regarding the clinical efficacy of remdesivir; overall, it offers an effective launching pad for developing an oral version of GS-441524.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Humans , Post-Acute COVID-19 Syndrome/prevention & control , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors
6.
Structure ; 28(8): 874-878, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-2132441

ABSTRACT

During global pandemics, the spread of information needs to be faster than the spread of the virus in order to ensure the health and safety of human populations worldwide. In our current crisis, the demand for SARS-CoV-2 drugs and vaccines highlights the importance of biological targets and their three-dimensional shape. In particular, structural biology as a field was poised to quickly respond to crises due to previous experience and expertise and because of its early adoption of open access practices.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Viral Proteins/chemistry , COVID-19 , Coronavirus 3C Proteases , Coronavirus RNA-Dependent RNA Polymerase , Cysteine Endopeptidases/chemistry , Databases, Protein , Humans , Models, Molecular , Molecular Biology , Protein Conformation , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry
7.
Sci Rep ; 12(1): 19986, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2133634

ABSTRACT

RNA dependent RNA polymerase (RdRp), is an essential in the RNA replication within the life cycle of the severely acute respiratory coronavirus-2 (SARS-CoV-2), causing the deadly respiratory induced sickness COVID-19. Remdesivir is a prodrug that has seen some success in inhibiting this enzyme, however there is still the pressing need for effective alternatives. In this study, we present the discovery of four non-nucleoside small molecules that bind favorably to SARS-CoV-2 RdRp over the active form of the popular drug remdesivir (RTP) and adenosine triphosphate (ATP) by utilizing high-throughput virtual screening (HTVS) against the vast ZINC compound database coupled with extensive molecular dynamics (MD) simulations. After post-trajectory analysis, we found that the simulations of complexes containing both ATP and RTP remained stable for the duration of their trajectories. Additionally, it was revealed that the phosphate tail of RTP was stabilized by both the positive amino acid pocket and magnesium ions near the entry channel of RdRp which includes residues K551, R553, R555 and K621. It was also found that residues D623, D760, and N691 further stabilized the ribose portion of RTP with U10 on the template RNA strand forming hydrogen pairs with the adenosine motif. Using these models of RdRp, we employed them to screen the ZINC database of ~ 17 million molecules. Using docking and drug properties scoring, we narrowed down our selection to fourteen candidates. These were subjected to 200 ns simulations each underwent free energy calculations. We identified four hit compounds from the ZINC database that have similar binding poses to RTP while possessing lower overall binding free energies, with ZINC097971592 having a binding free energy two times lower than RTP.


Subject(s)
COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase , Humans , Molecular Dynamics Simulation , RNA, Viral , SARS-CoV-2 , Adenosine Triphosphate , RNA-Dependent RNA Polymerase , Zinc
8.
Biochemistry ; 61(18): 1966-1973, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2016509

ABSTRACT

Remdesivir is an adenosine analogue that has a cyano substitution in the C1' position of the ribosyl moiety and a modified base structure to stabilize the linkage of the base to the C1' atom with its strong electron-withdrawing cyano group. Within the replication-transcription complex (RTC) of SARS-CoV-2, the RNA-dependent RNA polymerase nsp12 selects remdesivir monophosphate (RMP) over adenosine monophosphate (AMP) for nucleotide incorporation but noticeably slows primer extension after the added RMP of the RNA duplex product is translocated by three base pairs. Cryo-EM structures have been determined for the RTC with RMP at the nucleotide-insertion (i) site or at the i + 1, i + 2, or i + 3 sites after product translocation to provide a structural basis for a delayed-inhibition mechanism by remdesivir. In this study, we applied molecular dynamics (MD) simulations to extend the resolution of structures to the measurable maximum that is intrinsically limited by MD properties of these complexes. Our MD simulations provide (i) a structural basis for nucleotide selectivity of the incoming substrates of remdesivir triphosphate over adenosine triphosphate and of ribonucleotide over deoxyribonucleotide, (ii) new detailed information on hydrogen atoms involved in H-bonding interactions between the enzyme and remdesivir, and (iii) direct information on the catalytically active complex that is not easily captured by experimental methods. Our improved resolution of interatomic interactions at the nucleotide-binding pocket between remedesivir and the polymerase could help to design a new class of anti-SARS-CoV-2 inhibitors.


Subject(s)
Adenosine Triphosphate , Antiviral Agents , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Alanine/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase , Deoxyribonucleotides , Hydrogen , Nucleotides , RNA, Viral/genetics , Ribonucleotides , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
9.
Commun Biol ; 5(1): 925, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2008334

ABSTRACT

RNA replication and transcription machinery is an important drug target for fighting against coronavirus. Non-structure protein nsp8 was proposed harboring primase activity. However, the RNA primer synthesis mechanism of nsp8 is still largely unknown. Here, we purified dimer and tetramer forms of SARS-CoV-2 nsp8. Combined with dynamic light scattering, small-angle neutron scattering and thermo-stability analysis, we found that both dimer and tetramer become loosened and destabilized with decreasing salt concentration, and the dimer form is more stable than the tetramer form. Further investigation showed that nsp8 dimer and tetramer can undergo phase separation but exhibit different phase separation behaviors. Nsp8 dimer can form liquid-like droplets in the buffer with a low concentration of NaCl; phase separation of nsp8 tetramer depends on the assistance of RNA. Our findings on different phase separation behaviors of nsp8 dimer and tetramer may provide insight into the functional studies of nsp8 in coronavirus.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Viral Nonstructural Proteins , Amino Acid Sequence , Coronavirus RNA-Dependent RNA Polymerase/chemistry , RNA/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry
10.
J Virol ; 96(16): e0067122, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1973790

ABSTRACT

Positive-strand RNA viruses replicate their genomes using virally encoded RNA-dependent RNA polymerases (RdRP) with a common active-site structure and closure mechanism upon which replication speed and fidelity can evolve to optimize virus fitness. Coronaviruses (CoV) form large multicomponent RNA replication-transcription complexes containing a core RNA synthesis machine made of the nsp12 RdRP protein with one nsp7 and two nsp8 proteins as essential subunits required for activity. We show that assembly of this complex can be accelerated 5-fold by preincubation of nsp12 with nsp8 and further optimized with the use of a novel nsp8L7 heterodimer fusion protein construct. Using rapid kinetics methods, we measure elongation rates of up to 260 nucleotides (nt)/s for the core replicase, a rate that is unusually fast for a viral polymerase. To address the origin of this fast rate, we examined the roles of two CoV-specific residues in the RdRP active site: Ala547, which replaces a conserved glutamate above the bound NTP, and Ser759, which mutates the palm domain GDD sequence to SDD. Our data show that Ala547 allows for a doubling of replication rate, but this comes at a fidelity cost that is mitigated by using a SDD sequence in the palm domain. Our biochemical data suggest that fixation of mutations in polymerase motifs F and C played a key role in nidovirus evolution by tuning replication rate and fidelity to accommodate their large genomes. IMPORTANCE Replicating large genomes represents a challenge for RNA viruses because fast RNA synthesis is needed to escape innate immunity defenses, but faster polymerases are inherently low-fidelity enzymes. Nonetheless, the coronaviruses replicate their ≈30-kb genomes using the core polymerase structure and mechanism common to all positive-strand RNA viruses. The classic explanation for their success is that the large-genome nidoviruses have acquired an exonuclease-based repair system that compensates for the high polymerase mutation rate. In this work, we establish that the nidoviral polymerases themselves also play a key role in maintaining genome integrity via mutations at two key active-site residues that enable very fast replication rates while maintaining typical mutation rates. Our findings further demonstrate the evolutionary plasticity of the core polymerase platform by showing how it has adapted during the expansion from short-genome picornaviruses to long-genome nidoviruses.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Severe acute respiratory syndrome-related coronavirus , Catalytic Domain , Genome, Viral , RNA/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/physiology , Virus Replication
11.
Sci Rep ; 12(1): 10571, 2022 06 22.
Article in English | MEDLINE | ID: covidwho-1900663

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global health pandemic. Among the viral proteins, RNA-dependent RNA polymerase (RdRp) is responsible for viral genome replication and has emerged as one of the most promising targets for pharmacological intervention against SARS-CoV-2. To this end, we experimentally tested luteolin and quercetin for their ability to inhibit the RdRp enzyme. These two compounds are ancestors of flavonoid natural compounds known for a variety of basal pharmacological activities. Luteolin and quercetin returned a single-digit IC50 of 4.6 µM and 6.9 µM, respectively. Then, through dynamic docking simulations, we identified possible binding modes of these compounds to a recently published cryo-EM structure of RdRp. Collectively, these data indicate that these two compounds are a valid starting point for further optimization and development of a new class of RdRp inhibitors to treat SARS-CoV-2 and potentially other viral infections.


Subject(s)
Antiviral Agents , Luteolin , Quercetin , SARS-CoV-2 , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Luteolin/pharmacology , Quercetin/pharmacology , RNA, Viral
12.
J Mol Biol ; 434(10): 167583, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1778319

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection has impacted the world economy and healthcare infrastructure. Key reagents with high specificity to SARS-CoV-2 proteins are currently lacking, which limits our ability to understand the pathophysiology of SARS-CoV-2 infections. To address this need, we initiated a series of studies to generate and develop highly specific antibodies against proteins from SARS-CoV-2 using an antibody engineering platform. These efforts resulted in 18 monoclonal antibodies against nine SARS-CoV-2 proteins. Here we report the characterization of several antibodies, including those that recognize Nsp1, Nsp8, Nsp12, and Orf3b viral proteins. Our validation studies included evaluation for use of antibodies in ELISA, western blots, and immunofluorescence assays (IFA). We expect that availability of these antibodies will enhance our ability to further characterize host-viral interactions, including specific roles played by viral proteins during infection, to acquire a better understanding of the pathophysiology of SARS-CoV-2 infections.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Viral Proteins , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/metabolism , Cell Surface Display Techniques , Coronavirus RNA-Dependent RNA Polymerase/analysis , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/analysis , Viral Proteins/analysis
13.
Proc Natl Acad Sci U S A ; 119(16): e2117142119, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1774040

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Polyproteins/chemistry , Protein Conformation , Proteolysis , SARS-CoV-2/enzymology , Substrate Specificity/genetics
14.
Nat Commun ; 13(1): 1547, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1751715

ABSTRACT

SARS-CoV-2 remdesivir resistance mutations have been generated in vitro but have not been reported in patients receiving treatment with the antiviral agent. We present a case of an immunocompromised patient with acquired B-cell deficiency who developed an indolent, protracted course of SARS-CoV-2 infection. Remdesivir therapy alleviated symptoms and produced a transient virologic response, but her course was complicated by recrudescence of high-grade viral shedding. Whole genome sequencing identified a mutation, E802D, in the nsp12 RNA-dependent RNA polymerase, which was not present in pre-treatment specimens. In vitro experiments demonstrated that the mutation conferred a ~6-fold increase in remdesivir IC50 but resulted in a fitness cost in the absence of remdesivir. Sustained clinical and virologic response was achieved after treatment with casirivimab-imdevimab. Although the fitness cost observed in vitro may limit the risk posed by E802D, this case illustrates the importance of monitoring for remdesivir resistance and the potential benefit of combinatorial therapies in immunocompromised patients with SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antibodies, Monoclonal, Humanized , Coronavirus RNA-Dependent RNA Polymerase , Female , Humans , Immunocompromised Host , Mutation , SARS-CoV-2/genetics
15.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1748423

ABSTRACT

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Phytotherapy , Plant Preparations/therapeutic use , SARS-CoV-2 , Antioxidants/isolation & purification , Antioxidants/therapeutic use , COVID-19/virology , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/drug effects , Dietary Supplements , Ginger/chemistry , Humans , Immune System/drug effects , India , Ligands , Medicine, Traditional , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Piper/chemistry , Piper nigrum/chemistry , Plant Preparations/isolation & purification , Plants, Medicinal/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects
16.
Viruses ; 12(6)2020 06 25.
Article in English | MEDLINE | ID: covidwho-1726024

ABSTRACT

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has highlighted the importance of reliable and rapid diagnostic testing to prevent and control virus circulation. Dozens of monoplex in-house RT-qPCR assays are already available; however, the development of dual-target assays is suited to avoid false-negative results caused by polymorphisms or point mutations, that can compromise the accuracy of diagnostic and screening tests. In this study, two mono-target assays recommended by WHO (E-Sarbeco (enveloppe gene, Charite University, Berlin, Germany) and RdRp-IP4 (RdRp, Institut Pasteur, Paris, France)) were selected and combined in a unique robust test; the resulting duo SARS-CoV-2 RT-qPCR assay was compared to the two parental monoplex tests. The duo SARS-CoV-2 assay performed equally, or better, in terms of sensitivity, specificity, linearity and signal intensity. We demonstrated that combining two single systems into a dual-target assay (with or without an MS2-based internal control) did not impair performances, providing a potent tool adapted for routine molecular diagnosis in clinical microbiology laboratories.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction/methods , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Sensitivity and Specificity , World Health Organization
17.
Mar Drugs ; 20(3)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715534

ABSTRACT

Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation.


Subject(s)
Antiviral Agents/pharmacology , Chromones/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/isolation & purification , Aspergillus niger/chemistry , Chlorocebus aethiops , Chromones/isolation & purification , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , Protease Inhibitors/isolation & purification , RNA Helicases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
18.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653430

ABSTRACT

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Genome, Viral , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Dosage , Gene Expression , Humans , Jurkat Cells , Lentivirus/genetics , Lentivirus/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/metabolism , RNA, Viral/standards , Reagent Kits, Diagnostic/supply & distribution , Reference Standards , Reproducibility of Results , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Genome Packaging
19.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648677

ABSTRACT

The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/drug effects , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Pyrimidines/pharmacology , Triazoles/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amides/pharmacology , COVID-19/metabolism , Catalytic Domain/drug effects , Computational Biology/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazines/pharmacology , Pyrimidines/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/drug effects , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triazoles/chemistry , Virus Replication/drug effects , COVID-19 Drug Treatment
20.
Science ; 375(6577): 161-167, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1648160

ABSTRACT

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Uracil Nucleotides/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/virology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Disease Models, Animal , Female , Ferrets , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mononegavirales/drug effects , Mononegavirales/physiology , RNA-Dependent RNA Polymerase/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/physiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Transcription, Genetic , Uracil Nucleotides/administration & dosage , Uracil Nucleotides/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL